If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x-42=0
a = 2; b = 12; c = -42;
Δ = b2-4ac
Δ = 122-4·2·(-42)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{30}}{2*2}=\frac{-12-4\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{30}}{2*2}=\frac{-12+4\sqrt{30}}{4} $
| 8x+3=7x12 | | 9+3x=21-x | | -2(-5+y)+2y=10 | | x=-1.1*x | | x=7.81*x | | 1.3^x=5 | | (1.03)^(x+1)=2 | | 13=21.s=21 | | 3x+2(38-3x)=52 | | 9.75=1/16w | | (y-2)(y^2+2y+4)=0 | | 8x-4=2x+12 | | 10+8y3=82 | | 3x+172=73 | | 3x+(86x2)=73 | | 37+90+x=143 | | -2x-5=30 | | 8y=6y+7/ | | 16+x=126 | | Y=4.3(2*x) | | 6x-12+64+74=180 | | 6c=9(c-2) | | 5c-0.75=11 | | 3x-15+4x-7+90=180 | | 6(n-3)-4=84 | | 20+8u=13u-20 | | a-5=-7+1 | | 6x(x-8)=32 | | 6x(x=8)=32 | | 10d2-55d+75=0 | | (7t^2-4t+3)=t^2+1-1 | | x=(2468)/((510-115))+(2468)/((510+115)) |